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ABSTRACT

This paper is devoted to the numerical modelling of transient exterior acoustics problems. The propagation of acoustic
waves in waveguides is addressed. These systems can be decoupled into a series of scalar problems using the method
of separation of variables. For each mode, high-order doubly asymptotic boundaries for the resulting scalar wave
equation are proposed. This is based on a continued-fraction solution of the frequency-dependent modal impedance
coefficient, which relates the modal pressure to the modal flux at the near field / far field interface. The continued-fraction
solution is transformed into a series of linear equations in the frequency domain by introducing internal variables. This
corresponds to a system of first-order differential equations in the time-domain, which fully represents the unbounded
waveguide in a transient analysis. Numerical experiments demonstrate that both evanescent and propagating modes can
be modelled with high accuracy. This leads to stable time-domain solutions, even for long-time simulations. Highly
accurate representations can be achieved for arbitrarily high modes. The proposed method is used to study several
transient acoustic wave propagation problems in waveguides.

INTRODUCTION

When modelling wave propagation, it is often necessary to in-
troduce an artificial boundary around the region of interest so
that the size of the computational domain is limited to allow the
application of well-established numerical methods such as the
finite element method. The region exterior to the artificial bound-
ary is regarded as an unbounded domain. A boundary condition
mimicking the unbounded domain has to be enforced on the
artificial boundary to prevent fictitious reflections that pollute
the solution. A direct time-domain formulation is required when
non-linearities occur in the region of interest. Such a boundary
condition is referred to as ‘absorbing boundary’ in this paper.
Extensive literature on various absorbing boundaries exists. Ex-
cellent literature reviews can be found in [2, 10, 11, 19, 28].

In theory, an exact absorbing boundary is global in space and
time. When a rigorous method (for example the boundary el-
ement method [4, 5], the thin-layer method [20] or the scaled
boundary finite element method [30]) is employed to construct
an absorbing boundary, the formulation is global. The convo-
lution integral and storage of the response history are compu-
tationally expensive for large-scale problems and long-time
simulations.

As an alternative, a large number of approximate absorbing
boundaries have been developed. Well-known examples include
the viscous boundary [23], the superposition boundary [25], and
the extrapolation boundary [22]. Generally speaking, they are
spatially and temporally local, and thus computationally effi-
cient. However, they have to be applied to an artificial boundary
sufficiently far away from the region of interest in order to
obtain results of acceptable accuracy. This increases the total
computational effort.

To increase the accuracy and efficiency of simple absorbing
boundaries, high-order local absorbing boundaries have been

proposed. This type of absorbing boundary has the potential
of leading to accurate results as the order of approximation
increases. At the same time, it is computationally efficient ow-
ing to its local formulation. Examples of early developments
include the paraxial boundary [6], the Bayliss, Gunzburger and
Turkel (BGT) boundary [1] and the multi-direction boundary
[18]. The order of derivative in these formulations increases
with the order of the absorbing boundary. Beyond the second
order, the implementation in a finite element computer program
becomes complex and instability may occur.

Researchers in several fields have shown their strong interest
in developing absorbing boundaries of arbitrarily high order
(see, e.g. [12–16, 21, 27]). Literature reviews are available, for
example in Refs. [10, 28]. All the above high-order absorb-
ing boundaries were constructed to absorb propagating waves
radiating energy. As they are singly-asymptotic at the high-
frequency limit, they are appropriate for radiative fields. In
some cases of applications, a part of the total energy may be
trapped near the region of interest and may not propagate to
infinity. The best-known example is probably the evanescent
waves occuring in a waveguide. It is explained in Ref. [17] that
inclusion of evanescent modes improves the accuracy of the
long-time behaviour of high-order absorbing boundaries.

From an application point of view, it is highly desirable to de-
velop a temporally local absorbing boundary that is capable
of accurately mimicking an unbounded domain over the en-
tire frequency range. One advance towards this objective is the
introduction of doubly-asymptotic boundaries [7, 8, 29]. This
formulation is spatially global as the dynamic stiffness is ex-
act not only at high-frequency limit but also at statics. To the
knowledge of the authors, the highest order reported is three
[9].

Recently, a new approach to construct temporally local absorb-
ing boundaries of arbitrarily high order has been proposed in
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Ref. [3]. It is applicable to both scalar and vector waves. Differ-
ent from most existing approaches, it seeks a continued fraction
solution for the equation of the dynamic stiffness matrix of an
unbounded domain obtained using the scaled boundary finite
element method [26]. By using the continued fraction solution,
the force-displacement relationship of the unbounded domain is
formulated as a temporally local absorbing boundary condition
in the time domain. However, like other high-order absorbing
boundaries, this absorbing boundary is inappropriate to model
evanescent waves, and the convergence rate at low frequencies
is much lower than at high frequencies.

In this paper, a technique for constructing a high-order dou-
bly asymptotic absorbing boundary is proposed by extending
the work in Ref. [3]. The acoustic wave equation in a semi-
infinite layer with constant depth (a waveguide) is addressed.
The proposed technique can be readily applied to other im-
portant problems which can be solved using the method of
separation of variables, such as the circular cavity embedded
in a full plane and the sphere embedded in full space. The ab-
sorbing boundaries derived for these cases can be used directly
for the solution of practical problems by introducing straight or
circular boundaries. Further work on modelling acoustic prob-
lems with more general geometries and inhomogeneities is in
progress.

The further outline of this paper is as follows. In the following
Section, the governing partial differential equations of the two-
dimensional acoustic problem are transformed into a set of
ordinary differential equations using the method of separation
of variables. A modal impedance coefficient is defined, which
relates the amplitude of the modal flux to the amplitude of the
modal pressure at the vertical boundary. An algebraic equation
for this impedance coefficient as a function of the frequency
ω is derived. A high-order absorbing boundary is obtained
by expanding the modal impedance coefficient into a doubly
asymptotic series of continued fractions. The continued-fraction
solution can be expressed as a series of linear equations in the
frequency domain [24], which corresponds to a system of first-
order differential equations in the time domain. The proposed
method is used to study several acoustic wave propagation
problems in a waveguide.

MODAL DECOMPOSITION OF ACOUSTIC WAVE
EQUATION IN A WAVEGUIDE

Acoustic wave propagation in a semi-infinite two-dimensional
layered medium of constant thickness h as shown in Fig. 1 is
considered in this paper. In general, the domain is split into a

-
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Figure 1: Semi-infinite layer with constant depth h.

rectangular near field region ΩN and a semi-infinite far field
region ΩF . The two domains are linked by the artificial bound-
ary Γv at x = xv. Typically, we are interested in the numerical
solution of the acoustic problem in the bounded region ΩN .
This solution can be computed using the well-established finite
element method provided that a suitable boundary condition at
the artificial boundary Γv is available. The aim of this paper is
to formulate such an absorbing boundary condition which is

suitable for the analysis of transient acoustics problems. There-
fore, we focus on the semi-infinite region ΩF in the following.
The method of separation of variables can be applied to obtain
a series of one-dimensional differential equations to describe
acoustic wave propagation in ΩF .

Semi-infinite layer with constant depth

The acoustic wave equation is expressed as,

∇
2 p =

1
c2 p̈, (1)

where p = p(x,y, t) denotes the pressure field and c is the ve-
locity of acoustic wave propagation. At a vertical boundary, the
flux q(x,y, t) is defined as

q(x,y, t) = p,n =−p,x(x,y, t). (2)

It is assumed that a distributed flux qv is applied to the vertical
(artificial) boundary Γv.

qv = q(x = xv,y, t) =−p,x(x = xv,y, t). (3)

Here and in the following, the subscript ‘v’ indicates the posi-
tion xv. The boundary conditions prescribed at the parallel upper
boundary Γu and lower boundary Γl are satisfied by eigenfunc-
tions using the method of separation of variables. In this paper,
the following situation is considered. The lower boundary Γl is
assumed to be rigid. This corresponds to zero normal flux. At
the upper boundary Γu, zero pressure is assumed (corresponding
to a free water surface, for example).

The pressure field p = p(x,y, t) is written as the product of two
functions p̃ = p̃(x, t) and Y = Y (y),

p = p̃Y. (4)

Substituting Eq. (4) in Eq. (1) yields:

p̃,xxY + p̃Y,yy =
1
c2

¨̃pY. (5)

Dividing by p̃Y , Eq. (5) is transformed in two independent
differential equations: an ordinary differential equation with
respect to the vertical coordinate y (Eq. (6)), and a partial dif-
ferential equation with respect to x and t (Eq. (7)).

−
Y,yy

Y
= k, (6)

p̃,xx

p̃
− 1

c2

¨̃p
p̃

= k. (7)

For convenience, the constant k is chosen as k = λ 2

h2 . The ordi-
nary differential equation (6) is rewritten as

0 = Y,yy +
λ 2

h2 Y. (8)

Its solution is expressed as,

Y = C1 cos
(

λ
y
h

)
+C2 sin

(
λ

y
h

)
. (9)

The integration constants C1 and C2 are determined by the
boundary conditions at Γu and Γl . The resulting eigenvalues λ j
and eigenfunctions Y j = Y j(y) are summarized in Eq. (10).

cosλ = 0,
λ j = (2 j +1) π

2 , j = 0,1, · · ·
Y j = cos

(
λ j

y
h
)

 Γl : p,y = 0,
Γu : p = 0 (10)

The solution of the remaining partial differential equation (7)
with respect to x and t for one eigenvalue λ j is addressed next.

p̃ j,xx−
(

λ j

h

)2
p̃ j =

1
c2

¨̃p j. (11)
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Analytical solution

Assuming a time-harmonic behaviour,

p̃ j(x, t) = P̃j(x,ω)eiωt , (12)

Eq. (11) is re-formulated as:

P̃j,xx−
(

λ j

h

)2
P̃j =−ω2

c2 P̃j, (13)

where the symbol P̃j denotes the amplitude of the modal pres-
sure p̃ j. Using the dimensionless parameter a with,

a = ω
h
c
, (14)

the solution of Eq. (13) leading to a finite modal pressure at
x→ ∞ is expressed as,

P̃j = C · e−
√

λ 2
j −a2 x

h . (15)

For the semi-infinite layer extending to the right-hand side, the
amplitude Q(x,y,ω) of the flux q(x,y, t),

q(x,y, t) = Q(x,y,ω)eiωt , (16)

as defined in Eq. (2) is expressed after modal decomposition of
the pressure field as

Q(x,y,ω) =−
∞

∑
j=0

(
P̃j(x,ω)

)
,x Y j(y). (17)

A modal flux-temperature relationship, which is independent
of y, is obtained by making use of the orthogonality of the
eigenfunctions Y j. Multiplying Eq. (17) by Y j and integrating
over the depth of the layer we obtain for one mode j,∫ h

y=0
Q(x,y,ω)Y j(y)dy =−h

2
(
P̃j(x,ω)

)
,x . (18)

The symbol R̃ j = R̃ j(x,ω) is introduced to denote the modal
flux at a vertical boundary:

R̃ j(x,ω) = 2
∫ h

y=0
Q(x,y,ω)Y j(y)dy. (19)

Equation (20) follows from Eqs. (18) and (19) as,

R̃ j =−hP̃j,x, (20)

with,

P̃j,x =−
√

λ 2
j −a2 1

h
C · e−

√
λ 2

j −a2 x
h =−

√
λ 2

j −a2 1
h

P̃j. (21)

On the other hand, at the vertical boundary Γv the amplitude of
the modal flux R̃ j(xv) is related to the amplitude of the modal
pressure P̃j(xv) through:

R̃ j(xv,a) = S(a)P̃j(xv,a). (22)

The flux-pressure relationship is characterized by the coefficient
S(a), which is a function of the dimensionless parameter a and
thus of the frequency ω . It is referred to as impedance coefficient
in the following. Evaluating Eq. (21) at x = xv and equating
Eqs. (20) and (22), the modal impedance coefficient of the
semi-infinite layer is obtained as:

S(a) =
√

λ 2
j −a2. (23)

Eqs. (22) and (23) form the analytical solution in the frequency
domain.

To obtain a reference solution to validate numerical results
in the time domain, the response to a unit-impulse modal flux
r̃ jI(xv, t) = δ (t) applied at x = xv is evaluated. The Fourier trans-
form of the unit-impulse function is R̃ jI(xv) = 1. The amplitude
P̃jI(xv) of the modal pressure due to the above unit-impulse
modal flux r̃ jI(xv) follows from Eqs. (22) and (23):

P̃jI(xv) =
1√

λ 2
j −a2

. (24)

The unit-impulse response p̃ jI(xv) in the time domain is ob-
tained by applying the inverse Fourier transformation to Eq.
(24). For P̃jI(xv) given in Eq. (24), the Fourier integral can be
evaluated in closed form,

p̃ jI(xv, t) =
c
h

J0

(
λ j

ct
h

)
H(t) (25)

with the dimensionless time,

t̄ =
ct
h

. (26)

The symbols J0 and H(t) denote the zero order first kind Bessel
function and the Heaviside step function, respectively.

The pressure response due to an arbitrary prescribed modal flux
r̃ j(xv, t) can finally be expressed as a convolution integral,

p̃ j(xv, t) =
∫ t

0
p̃ jI(xv, t− τ)r̃ j(xv,τ)dτ. (27)

The numerical evaluation of the convolution integral in Eq. (27)
can be computationally expensive for longer observation times
and is not desired in a general time-domain analysis. In order
to derive a local formulation, the problem is recast in terms of
the modal impedance coefficient S(a) in the following.

Formulation in terms of modal impedance coefficient

An equation for the modal impedance coefficient is obtained
rewriting Eq. (23) as:

S2 = λ
2
j −a2 = λ

2 +(ia)2 . (28)

Eq. (28) can be solved by expanding S(a) into a doubly asymp-
totic series of continued fractions in terms of ia. Following
the procedure described in Ref. [24], the coefficients of the
continued-fraction expansion are obtained as functions of the
eigenvalue λ j. Thus, a different continued-fraction representa-
tion is constructed for each mode j. This is avoided normal-
izing both the impedance coefficient S and the dimensionless
frequency a with respect to the eigenvalue λ j,

S̄ =
S
λ j

, ā =
a
λ j

, (29)

Using Eq. (29), Eq. (28) is rewritten as,

S̄2 = 1− ā2. (30)

DOUBLY ASYMPTOTIC EXPANSION OF MODAL
IMPEDANCE COEFFICIENT

The continued-fraction solution of Eq. (30) is demonstrated
in the following. The procedure is analogous to the derivation
presented in Ref. [24], but differs in that only one and the same
continued-fraction expansion is obtained for all modes of the
semi-infinite layer. In a first step, an asymptotic expansion of the
normalized impedance coefficient valid for high values ā→ ∞

is constructed analogous to Ref. [3].
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Asymptotic expansion for ā→ ∞

For high values ā→ ∞, the normalized impedance coefficient
S̄ tends to iā. This can easily be verified considering Eq. (30).
For arbitrary values ā, the normalized impedance coefficient is
expressed as:

S̄ = iā−
(

Y (1)(ā)
)−1

. (31)

In Eq. (31) the term
(

Y (1)(ā)
)−1

represents the residual of the
asymptotic expansion, i. e. the difference between the normal-
ized impedance coefficient and its value for ā→∞. The residual
tends to zero for ā→ ∞. For convenience, it is expressed as the
inverse of a yet unknown function Y (1)(ā) of ā. The superscript
(1) indicates the first step of a recursive procedure, as will be-
come evident further in the derivation. Substituting Eq. (31) in
Eq. (30) results in:

−1−2iā
(

Y (1)(ā)
)−1

+
(

Y (1)(ā)
)−2

= 0. (32)

Eq. (32) can be written as the i = 1 case of:

1−2b(i)iāY (i)(ā)−
(

Y (i)(ā)
)2

= 0, (33)

with
b(1) = 1. (34)

Analogous to Eq. (31), the unknown function Y (i)(ā) is decom-
posed as:

Y (i)(ā) = iāC(i)−
(

Y (i+1)(ā)
)−1

. (35)

Here, we assume that Y (i)(ā) tends to a linear function of iā for
ā→ ∞. The slope C(i) of this linear function is yet unknown.
Substituting Eq. (35) in Eq. (33) yields:

− (iā)2
((

C(i)
)2

+2b(i)C(i)
)

+1+2iā
(

C(i) +b(i)
)
×(

Y (i+1)(ā)
)−1
−
(

Y i+1(ā)
)−2

= 0. (36)

This is an equation for the coefficient C(i) and for the yet un-

known residual
(

Y (i+1)(ā)
)−1

. Individual equations are ob-
tained by setting terms corresponding to different powers of iā
to zero in descending order. Setting the first term of Eq. (36)
(i. e. (iā)2) to zero yields an equation for C(i),

C(i) =−2b(i), (37)

For i = 1 we obtain C(1) = −2. Setting the remainder of Eq.
(36) to zero using Eq. (37) leads to an equation for Y (i+1)(ā),

1+2iāb(i)Y (i+1)(ā)−
(

Y (i+1)(ā)
)2

= 0. (38)

The recursive formula

b(i+1) =−b(i), (39)

is introduced to update the coefficient b. Using Eq. (39), Eq.
(38) can be written as

1−2iāb(i+1)Y (i+1)(ā)−
(

Y (i+1)(ā)
)2

= 0. (40)

This is the (i +1) case of Eq. (33). General equations for b(i)

and C(i) follow from Eqs. (34), (39) and (37) as:

b(i) = (−1)i+1, i = 1,2, . . . ,MH , (41)

C(i) = (−1)i2, i = 1,2, . . . ,MH . (42)

After i = MH steps, the normalized impedance coefficient is
expressed as

S̄ = iā− 1

C(1)(iā)− 1

C(2)(iā)−·· · 1

C(MH )(iā)−
(

Y (MH+1)(ā)
)−1

(43)
For a given order MH , the coefficients C(i), (i = 1 · · ·MH) of
this continued-fraction expansion can be calculated using Eq.

(42). The remaining residual
(

Y (MH+1)(ā)
)−1

is yet unknown.
In order to find a solution which is valid over the whole range of

ā, the remaining residual term
(

Y (MH+1)(ā)
)−1

is determined

such that the final doubly asymptotic expansion of S̄(ā) is exact
for ā = 0.

Asymptotic expansion for ā→ 0

The inverse Y (MH+1)(ā) of the residual term corresponding to a
continued-fraction expansion for high values ā→ ∞ of degree
MH is denoted as:

Y (MH+1)(ā) = YL(ā). (44)

Using Eq. (44), the i = MH +1 case of Eq. (33) is written as:

1−2iābLYL(ā)− (YL(ā))2 = 0, (45)

with
bL = b(MH+1) = (−1)MH . (46)

The unknown function YL(ā) is expanded as:

YL(ā) = K(0)
L + iāC(0)

L − (iā)2
(

Y (1)
L (ā)

)−1
. (47)

This expansion is designed such that YL(ā) approaches the con-
stant K(0)

L for ā→ 0, whereas the yet undetermined linear term

iāC(0)
L and the residual (iā)2

(
Y (1)

L (ā)
)−1

vanish. Substituting
Eq. (47) in Eq. (45) yields:

1−
(

K(0)
L

)2
− iā

(
2bLK(0)

L +2K(0)
L C(0)

L

)
+

(iā)2
(
−2bLC(0)

L −
(

C(0)
L

)2
+2
(

K(0)
L + iā

(
C(0)

L +bL

))
×(

Y (1)
L (ā)

)−1
− (iā)2

(
Y (1)

L (ā)
)−2)

. (48)

Equations for K(0)
L , C(0)

L and
(

Y (1)
L (ā)

)−1
are found by set-

ting terms corresponding to different powers of (iā) to zero in
ascending order. The constant term (i. e. (iā)0) yields:

1−
(

K(0)
L

)2
= 0. (49)

Eq. (49) has two possible solutions. The one leading to the
correct normalized impedance for ā = 0, S̄(ā = 0) = 1, should
be chosen. This is:

K(0)
L = (−1)MH+1. (50)

Note that the sign of K(0)
L depends on the order of continued-

fraction expansion MH for high values of ā. The linear term in
Eq. (48) leads to an equation for C(0)

L :

C(0)
L =−bL = (−1)MH+1. (51)
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The remaining term in Eq. (48) yields an equation for the un-
known function Y (1)

L (ā).

(iā)2−2
(

K(0)
L + iā

(
C(0)

L +bL

))
Y (1)

L (ā)+(
2bLC(0)

L +
(

C(0)
L

)2
)(

Y (1)
L (ā)

)2
= 0. (52)

Using Eqs. (50) and (51), Eq. (52) can be written as the i = 1
case of:

(iā)2−2b(i)
L Y (i)

L (ā)−
(

Y (i)
L (ā)

)2
= 0, (53)

with
b(1)

L =−bL = (−1)MH+1. (54)

Analogous to Eq. (47) the unknown function Y (i)
L (ā) is decom-

posed as:

Y (i)
L (ā) = K(i)

L − (iā)2
(

Y (i+1)
L (ā)

)−1
. (55)

Note that the linear term is omitted in Eq. (55) as its solution
is equal to zero, which can easily be verified. Substituting Eq.
(55) into Eq. (53) leads to:

−
(

2b(i)
L K(i)

L +
(

K(i)
L

)2
)

+(iā)2
(

1+2
(

b(i)
L +K(i)

L

)
×(

Y (i+1)
L (ā)

)−1
− (iā)2

(
Y (i+1)

L (ā)
)−2)

= 0. (56)

In the recursive procedure, general expressions for the coeffi-
cients K(i)

L and for the unknown function Y (i+1)
L (ā) are deter-

mined setting the terms corresponding to different powers of
(iā) equal to zero in ascending order. Setting the constant term
equal to zero yields for K(i)

L :

K(i)
L =−2b(i)

L . (57)

Setting the remaining term to zero and using Eq. (57) leads to:

(iā)2 +2b(i)
L Y (i+1)

L (ā)−
(

Y (i+1)
L (ā)

)2
= 0. (58)

Eq. (58) is the case (i+1) of Eq. (53) with

b(i+1)
L =−b(i)

L . (59)

Using Eq. (54), the constants b(i)
L and K(i)

L can be explicitely
expressed as:

b(i)
L = (−1)MH+i, i = 1,2, . . . ,ML, (60)

K(i)
L = 2(−1)MH+i+1, i = 1,2, . . . ,ML. (61)

The recursive procedure is terminated with the assumption(
Y (ML+1)

L (ā)
)−1

= 0. (62)

The doubly asymptotic continued fraction solution is construc-
ted by combining the asymptotic expansion for ā→ ∞ with
the solution for ā→ 0. For example, the order MH = ML = 2
doubly asymptotic continued fraction solution is obtained as

S̄(ā) = iā− 1

−2(iā)− 1

2(iā)− 1

−1− iā− (iā)2

2− (iā)2

−2

. (63)

In the following, a time-domain model for acoustic wave propa-
gation in a semi-infinite layer is obtained by transforming the
continued-fraction solution into a system of linear equations in
terms of iω . This is done by introducing internal variables. The
proposed method can be extended to the multidimensional case
straightforwardly.

IMPLEMENTATION IN THE TIME DOMAIN

In order to derive a time-domain equivalent of the doubly asymp-
totic continued-fraction expansion of the normalized impedance
coefficient, the equations derived above are re-assembled, start-
ing with Eqs. (22), (29) and (31):

R̃ j(xv) = SP̃j(xv) = λ jS̄P̃j(xv) =(
λ jiā−λ j

(
Y (1)(ā)

)−1
)

P̃j(xv). (64)

Using ā = a/λ j and intoducing an internal variable P̃(1)
j , a first

linear equation (65) in terms of ia is obtained.

R̃ j(xv) = iaP̃j(xv)−λ jP̃
(1)
j , (65)

with
P̃j(xv) = Y (1)(ā)P̃(1)

j . (66)

Using Eq. (35), Eq. (66) can be written as:

P̃j(xv) =
(

iāC(1)−
(

Y (2)(ā)
)−1

)
P̃(1)

j . (67)

A second linear equation (68) in terms of ia is obtained intro-
ducing a second internal variable P̃(2)

j .

λ jP̃j(xv) = iaC(1)P̃(1)
j −λ jP̃

(2)
j (68)

This process is continued until a total of MH internal variables
have been introduced to represent the high-asymptotic part
of the continued-fraction expansion. The (MH + 1)-th linear
equation in terms of ia can be written as:

λ jP̃
(MH−1)
j = iaC(MH )P̃(MH )

j −λ jP̃
(MH+1)
j . (69)

The internal variable P̃(MH+1)
j is defined as:

P̃(MH )
j = Y (MH+1)(ā)P̃(MH+1)

j = YL(ā)P̃(MH+1)
j , (70)

with the residual Y (MH+1) given in Eq. (44). Using Eq. (47), Eq.
(70) can be written as:

P̃(MH )
j =

(
K(0)

L + iāC(0)
L − (iā)2

(
Y (1)

L (ā)
)−1

)
P̃(MH+1)

j .

(71)
The (MH +2)-th linear equation (72) in terms of ia follows by
introducing the internal variable P̃(1)

jL as defined in Eq. (73).

λ jP̃
(MH )
j =

(
λ jK

(0)
L + iaC(0)

L

)
P̃(MH+1)

j − iaP̃(1)
jL . (72)

iā
(

Y (1)
L (ā)

)−1
P̃(MH+1)

j = P̃(1)
jL . (73)

Using Eq. (55), Eq. (73) can be reformulated as:

iaP̃(MH+1)
j = λ jK

(1)
L P̃(1)

jL − iaP̃(2)
jL , (74)

with
iaP̃(1)

jL = λ jY
(2)
L (ā)P̃(2)

jL . (75)

This procedure is continued until a total of ML internal vari-
ables P̃(i)

jL , (i = 1, . . . ,ML) have been introduced to represent the
low-asymptotic part of the continued-fraction expansion. The
process terminates with the assumption Y (ML+1)

L = 0. The final,
(MH +ML +2)-th linear equation (76) in terms of ia is:

iaP̃(ML−1)
jL = λ jK

(ML)
L P̃(ML)

jL . (76)
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The linear equations (65), (68)-(69), (72), (74)-(76) can be
summarized in matrix form:(

λ j[K]+ ia[C]
)
{Z}= {F}, (77)

with

{Z}=
[

P̃j(xv) P̃(1)
j · · · P̃(MH )

j P̃(MH+1)
j

P̃(1)
jL · · · P̃(ML)

jL

]T
, (78)

{F}=
[

R̃ j(xv) 0 · · · 0 0 0 · · · 0
]T

, (79)

[K] =



0 −1

−1 0
. . .

. . .
. . . −1
−1 0 −1

−1 K(0)
L 0

0 K(1)
L

. . .
. . .

. . . 0
0 K(ML)

L


,

(80)

[C] =



1 0

0 C(1) . . .
. . .

. . . 0
0 C(MH ) 0

0 C(0)
L −1

−1 0
. . .

. . .
. . . −1
−1 0


.

(81)

Eq. (77) is the flux-pressure relationship for one mode λ j for-
mulated in terms of ia. Note that the matrices [K] and [C] do
not depend on the eigenvalue λ j . A formulation in terms of the
frequency ω is obtained using Eq. (14):(

λ j[K]+ iω
h
c
[C]
)
{Z}= {F}. (82)

Eq. (82) in the frequency domain corresponds to the following
system of first-order differential equations in the time domain:

λ j[K]{z(t)}+ h
c
[C]{ż(t)}= { f (t)}. (83)

Eq. (83) represents the modal flux-pressure relationship of the
waveguide in the time-domain. The vector {z(t)} contains the
unknown, time-dependent modal pressure p̃ j(xv, t) at the near
field / far field interface and the corresponding time-dependent
internal variables p̃(1)

j (t), · · · , p̃(MH+1)
j (t), p̃(1)

jL (t) · · · p̃(ML)
jL (t).

The right-hand side vector { f (t)} contains the time-dependent
modal flux r̃ j(xv, t) at x = xv.

NUMERICAL EXAMPLES

Single mode of the waveguide

A single mode λ j of the semi-infinite layer is considered. The
normalized modal impedance coefficient S̄ is shown in Fig. 2 as
a function of the dimensionless frequency a for values ranging
from zero to 3λ j. In Fig. 2, the point a/λ j = 1 corresponds to
the cutoff frequency. It can be seen that the doubly-asymptotic
expansion of degree MH = ML = 2 agrees very well with the
corresponding analytical solution. Slight deviations occur in

(a) Real part

(b) Imaginary part

Figure 2: Normalized modal impedance coefficient S̄ of semi-
infinite layer as a function of the dimensionless frequency a

the vicinity of a/λ j = 1 . This can be improved by increasing
the degree of expansion, as can be seen for MH = ML = 5.
The corresponding high-asymptotic expansion is also shown
for MH = 5. Above the characteristic point a/λ j = 1.0 a very
good agreement, comparable to that of the doubly asymptotic
expansion of degree MH = ML = 2, is achieved using the high-
asymptotic expansion. However, for values below a/λ j = 1.0
the imaginary part of the high-asymptotic expansion diverges.
Its real part is always zero, as is expected. Fig. 2 illustrates that
the high-frequency asymptotic expansion of Ref. [3] fails when
wave propagation in a semi-infinite layer is modelled.

The modal temperature response to a unit-impulse modal flux
is computed using the proposed procedure. The normalized
impedance coefficient S̄(ā) is expanded into a doubly asymp-
totic series of continued fractions as described above. The de-
grees MH and ML of the two expansions for high and low
values of ā, respectively, are chosen as MH = ML = 2 and
MH = ML = 5, respectively. The computed normalized modal
pressure p̃ j(xv, t)h/c is compared to the analytical solution
given in Eq. (25) in Fig. 3.

It can be seen in Fig. 3a, that the low-order doubly asymp-
totic absorbing boundary (MH = ML = 2) is very accurate for
the first two periods (λ j t̄ < 10). After that, the unit-impulse
response is underestimated. The accuracy of the doubly-asymp-
totic absorbing boundary increases rapidly as its order increases.
This is demonstrated in Fig. 3b. For MH = ML = 5, very good
agreement with the exact solution is obtained for the first 10
periods. The doubly-asymptotic absorbing boundary is signifi-
cantly more accurate at late time than a corresponding singly-
asymptotic absorbing boundary with the same number of inter-
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nal variables. No ‘fictitious reflections’ occur.

(a) MH = ML = 2

(b) MH = ML = 5

Figure 3: Normalized modal pressure p̃ j(t) at x = xv due to
unit-impulse modal flux r jI applied at x = xv, t = 0.

Two-dimensional analysis

In a truly two-dimensional analysis, the pressure field p(x =
xv,y, t) due to an arbitrary given flux q(x = xv,y, t) at x = xv is
obtained by modal superposition.

p(x = xv,y, t) =
∞

∑
j=0

p̃ j(xv, t)Y j(y). (84)

The time-dependent modal pressure p̃ j(xv, t) is calculated di-
rectly in the time-domain using standard time-stepping schemes.
For each mode j, the right hand-side vector { f (t)} in Eq. (83)
contains the corresponding time-dependent modal flux r̃ j(xv, t),
which is obtained evaluating Eq. (19) at x = xv.

{ f (t)}=
[

r̃ j(xv, t) 0 · · · 0
]T

, (85)

r̃ j(xv, t) = 2
∫ h

0
qv(y, t)Y j(y)dy. (86)

A two-dimensional reservoir of depth h = 130m is considered.
The velocity of wave propagation c and mass density ρ of water
are given as

c = 1440m/s, ρ = 1000kg/m3. (87)

The reservoir is assumed to be bounded by a rigid dam at
the vertical boundary Γv. A uniform unit-impulse horizontal
acceleration,

ax = âxδ (t− t0), âx = 1.0
m
s2 , (88)

is applied to the rigid dam at t0 = 0s. This acceleration corre-
sponds to the prescribed flux qv(y, t) given in Eq. (89):

qv(y, t) = Qvδ (t− t0) =−axρδ (t− t0). (89)

An analytical solution for the resulting pressure distribution
at x = xv is constructed superimposing the modal unit-step
response given in Eq. (25) of all modes λ j:

p(xv,y, t) =−2ρ âxc
∞

∑
j=0

(−1) j

λ j
J0

(
λ j

ct
h

)
cos
(

λ j
y
h

)
. (90)

A comparison between the time-dependent pressure at the reser-
voir bottom (x = xv,y = 0) computed using the presented ap-
proach with MH = ML = 2, MH = ML = 5 and the correspond-
ing analytical solution is shown in Fig. 4. Only the first 10
modes have been taken into account. The solution using 20
modes is very close to the curves displayed in Fig. 4 and not
shown here for clarity. As for the single mode, the agreement

Figure 4: Hydrodynamic pressure at reservoir bottom (x =
xv,z = 0) due to ax = 1.0m/s2δ (t−t0), t0 = 0. 10 modes. Time
step: ∆t = 0.001s.

between the analytical solution and the proposed approach with
MH = ML = 2 is good for the first period, wheres the late time
response is underestimated using a low-order expansion. This
is improved using a high-order doubly asymptotic expansion.
The result obtained using MH = ML = 5 agrees very well with
the analytical solution. This confirms the high accuracy of the
proposed high-order absorbing boundary for acoustic wave
propagation.

Although only impulse functions have been considered here,
the proposed model can be used to simulate the time-dependent
distribution of the unknown pressure p(xv,y, t) due to arbitrary
transient boundary conditions qv(t)

CONCLUSIONS

A novel approach for constructing high-order doubly asymp-
totic absorbing boundaries of arbitrary order has been proposed.
The derivation and implementation are presented for the tran-
sient analysis of acoustic waves travelling in a waveguide. The
modal impedance of the proposed doubly asymptotic absorb-
ing boundary converges rapidly to the exact solution in the
frequency-domain as its order increases. Evanescent waves and
late-time (low-frequency) responses are simulated accurately.
The doubly asymptotic absorbing boundary shows significant
improvement in accuracy in comparison with the singly asymp-
totic absorbing boundary with the same number of terms.

The high-order doubly asymptotic absorbing boundaries are
expressed as first-order ordinary differential equations in time.
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The two time-dependent coefficient matrices are symmetric
and tri-diagonal. Well-established time-stepping schemes are
directly applicable.

Although only acoustic wave propagation in a waveguide has
been addressed in this paper, the proposed technique is equally
applicable to other systems which can be treated by the method
of separation of variables, such as the circular cavity or the
spherical cavity. More general homogeneous problems can thus
be treated by introducing straight, circular or spherical bound-
aries. Further work related to extending the proposed technique
to more general geometries and inhomogeneous problems is in
progress. Half-space or full-space problems, where the artificial
boundary has corners, can be modelled using the scaled bound-
ary finite element method. The doubly asymptotic solution of
the matrix-valued scaled boundary finite element equation in
impedance is the subject of current research.
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